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ABSTRACT 
In this paper, we consider the collaborative data publishing problem for anonymizing horizontally partitioned 

data at multiple data providers. We consider a new type of “insider attack” by colluding data providers who may 

use their own data records (a subset of the overall data) in addition to the external background knowledge to 

infer the data records contributed by other data providers. The paper addresses this new threat and makes several 

contributions. First, we introduce the notion of m-privacy, which guarantees that the anonymized data satisfies a 

given privacy constraint against any group of up to m colluding data providers. Second, we present heuristic 

algorithms exploiting the equivalence group monotonicity of privacy constraints and adaptive ordering 

techniques for efficiently checking m-privacy given a set of records. Finally, we present a data provider-aware 

anonymization algorithm with adaptive m- privacy checking strategies to ensure high utility and m-privacy of 

anonymized data with efficiency. Experiments on real-life datasets suggest that our approach achieves better or 

comparable utility and efficiency than existing and baseline algorithms while providing m-privacy guarantee. 

 

I. INTRODUCTION 
There is an increasing need for sharing data that 

contain personal information from distributed 

databases. For example, in the healthcare domain, a 

national agenda is to develop the Nationwide Health 

Information Network (NHIN)1 to share information 

among hospitals and other providers, and support 

appropriate use of health information beyond direct 

patient care with privacy protection. Privacy 

preserving data analysis and data publishing [1], [2], 

[3] have received considerable attention in recent 

years as promising approaches for sharing data while 

preserving individual privacy. When the data are 

distributed among multiple data providers or data 

owners, two main settings are used for 

anonymization [2], [4]. One approach is for each 

provider to anonymize the data independently 

(anonymize-and-aggregate, Figure 1A), which results 

in potential loss of integrated data utility. A more 

desirable approach is collaborative data publishing 

[5], [6], [2], [4], which anonymizes data from all 

providers as if they would come from one source 

(aggregateand- anonymize, Figure 1B), using either a 

trusted third-party (TTP) or Secure Multi-party 

Computation (SMC) protocols to do computations 

[7], [8]. 

Problem Settings. We consider the collaborative 

data publishing setting (Figure 1B) with horizontally 

partitioned data across multiple data providers, each 

contributing a subset of records Ti. As a special case, 

a data provider could be the data owner itself who is 

contributing its own records. 

 

 

 
Fig. 1. Distributed data publishing settings. 

 

This is a very common scenario in social 

networking and recommendation systems. Our goal is 

to publish an anonymized view of the integrated data 

such that a data recipient including the data providers 

will not be able to compromise the privacy of the 

individual records provided by other parties. 

Considering different types of malicious users and 

information they can use in attacks, we identify three 

main categories of attack scenarios. While the first 

two are addressed in existing work, the last one 

receives little attention and will be the focus of this 

paper. Attacks by External Data Recipient Using 

Anonymized Data. A data recipient, e.g. P0, could be 

an attacker and attempts to infer additional 

information about the records using the published 

data (T
*
) and some background knowledge (BK) such 

as publicly available external data. Most literature on 

privacy preserving data publishing in a single 

provider setting considers only such attacks [2]. 

Many of them adopt a weak or relaxed adversarial or 

Bayes-optimal privacy notion [9] to protect against 

specific types of attacks by assuming limited 

background knowledge. For example, k-anonymity 
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[10], [11] prevents identity disclosure attacks by 

requiring each equivalence group, records with the 

same quasi-identifier values, to contain at least k 

records. Representative constraints that prevent 

attribute disclosure attacks include l-diversity, which 

requires each equivalence group to contain at least l 

“well-represented” sensitive values [9], and t-

closeness [12], which requires the distribution of a 

sensitive attribute in any equivalence group to be 

close to its distribution in the whole population. In 

contrast, differential privacy [1], [3] publishes 

statistical data or computational results of data and 

gives unconditional privacy guarantees independent 

of attackers background knowledge. Attacks by Data 

Providers Using Intermediate Results and Their Own 

Data. We assume the data providers are semi honest 

[7], [8], commonly used in distributed computation 

setting. They can attempt to infer additional 

information about data coming from other providers 

by analyzing the data received during the 

anonymization. A trusted third party (TTP) or Secure 

Multi-Party Computation (SMC) protocols (e.g. [5]) 

can be used to guarantee there is no disclosure of 

intermediate information during the anonymization. 

However, either TTP or SMC do not protect against 

data providers to infer additional information about 

other records using the anonymized data and their 

own data (discussed below). Since the problem is 

orthogonal to whether a TTP or SMC is used for 

implementing the algorithm, without loss of 

generality, we have assumed that all providers use a 

TTP for anonymization and note that an SMC variant 

can be implemented. Attacks by Data Providers 

Using Anonymized Data and Their Own Data. Each 

data provider, such as P1 in Figure 1, can also use 

anonymized data T
*
 and his own data (T1) to infer 

additional information about other records. 

Compared to the attack by the external recipient in 

the first attack scenario, each provider has additional 

data knowledge of their own records, which can help 

with the attack. This issue can be further worsened 

when multiple data providers collude with each other. 

In the social network or recommendation setting, a 

user (having an account herself) may attempt to infer 

private information about other users using the 

anonymized data or recommendations assisted by 

some background knowledge and her own account 

information. Malicious users may collude or even 

create artificial accounts as in a shilling attack [13]. 

We define and address this new type of “insider 

attack” by data providers in this paper. In general, we 

define an m adversary as a coalition of m colluding 

data providers or data owners, who have access to 

their own data records as well as publicly available 

background knowledge BK and attempts to infer data 

records contributed by other data providers. Note that 

0-adversary can be used to model the external data 

recipient, who has only access to the external 

background knowledge. Since each provider holds a 

subset of the overall data, this inherent data 

knowledge has to be explicitly modeled and checked 

when the data are anonymized using a weak privacy 

constraint and assuming no instance level knowledge. 

We illustrate the m-adversary threats with an example 

shown in Table I. Assume that hospitals P1, P2, P3, 

and P4 wish to collaboratively anonymize their 

respective patient databases T1, T2, T3, and T4. In 

each database, Name is an identifier, {Age, Zip} is a 

quasi-identifier (QI), and Disease is a sensitive 

attribute. T
*
a is one possible QI-group-based 

anonymization using existing approaches that 

guarantees k anonymity and l-diversity (k = 3, l = 2). 

Note that l diversity holds if each equivalence group 

contains records with at least l different sensitive 

attribute values. However, an attacker from the 

hospital P1, who has access to T1, may remove all 

records from T
*
a is also in T1 and find out that there 

is only one patient between 20 and 30 years old. 

Combining this information with background 

knowledge BK, P1 can identify Sara’s record 

(highlighted in the table) and her disease Epilepsy. In 

general, multiple providers may collude with each 

other, hence having access to the union of their data, 

or a user may have access to multiple databases, e.g. 

a physician switching to another hospital, and use the 

increased data knowledge to infer data at other nodes.  

 
 

Contributions: In this paper, we address the new 

threat by m-adversaries and make several important 

contributions. First, we introduce the notion of m-

privacy that explicitly models the inherent data 
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knowledge of an m-adversary and protects 

anonymized data against such adversaries with 

respect to a given privacy constraint. For example, an 

anonymization satisfies m-privacy with respect to l-

diversity if the records in each equivalence group 

excluding ones from any m-adversary still satisfy l-

diversity. In our example in Table I, T
*
b is an 

anonymization that satisfies m-privacy (m = 1) with 

respect to k-anonymity and l-diversity (k = 3, l = 2). 

Second, to address the challenges of checking a 

combinatorial number of potential m-adversaries, we 

present heuristic algorithms for efficiently verifying 

m-privacy given a set of records. Our approach 

utilizes effective pruning strategies exploiting the 

equivalence group monotonicity property of privacy 

constraints and adaptive ordering techniques based 

on a novel notion of privacy fitness. Finally, we 

present a data provider-aware anonymization 

algorithm with adaptive strategies of checking m-

privacy to ensure high utility and m privacy of 

sanitized data with efficiency. We experimentally 

show the feasibility and benefits of our approach 

using real world dataset. 

 

II. m-PRIVACY DEFINITION 
We first formally describe our problem setting. 

Then we present our m-privacy definition with 

respect to a given privacy constraint to prevent 

inference attacks by m-adversary, followed by its 

properties. Let T = ft1, t2, . . .g be a set of records 

horizontally distributed among n data providers P = 

{P1, P2, . . . , Pn}, such that Ti is sub set or equal to 

T is a set of records provided by Pi. We assume AS is 

a sensitive attribute with domain DS. If the records 

contain multiple sensitive attributes then a new 

sensitive attribute AS can be defined as a Cartesian 

product of all sensitive attributes. Our goal is to 

publish an anonymized table T
*
 while preventing any 

m-adversary from inferring AS for any single record.  

 

A. m-Privacy: 

To protect data from external recipients with 

certain background knowledge BK, we assume a 

given privacy requirement C, defined by a 

conjunction of privacy constraints: C1 ^ C2 ^ . . . ^ 

Cw. If a set of records T
*
 satisfies C, we say C (T

*
) = 

true. Any of the existing privacy principles can be 

used as a component constraint. In our example 

(Table I), the privacy constraint C is defined as C = 

C1 ^ C2, where C1 is k-anonymity with k = 3, and C2 

is l-diversity with l = 2. Both anonymized tables, T
*
a 

and T
*
b satisfies C, although as we have shown 

earlier, T
*
 a may be compromised by an m-adversary 

such as P1. We now formally define a notion of m-

privacy with respect to a privacy constraint C, to 

protect the anonymized data against m-adversaries in 

addition to the external data recipients. The notion 

explicitly models the inherent data knowledge of an 

m-adversary, the data records they jointly contribute, 

and requires that each equivalence group, excluding 

any of those records owned by an m-adversary, still 

satisfies C.  

 Observation 2.1: For all m <=n-1, if T
*
 is m-private, 

then it is also (m-1)-private. If T
*
 is not m-private, 

then it is also not (m + 1)-private. Note that this 

observation describes monotonicity of m-privacy 

with respect to number of adversaries, which is 

independent from the privacy constraint C and 

records. In the next section we investigate 

monotonicity of m-privacy with respect to records 

with given value of m. 

m-Privacy and Weak Privacy Constraints. Given a 

weak privacy constraint C that does not consider 

instance level background knowledge, such as k-

anonymity, l-diversity, and t-closeness, a T
*
 

satisfying C will only guarantee 0-privacy w.r.t. C, 

i.e. C is not guaranteed to hold for each equivalence 

group after excluding records belonging to any 

malicious data provider. Thus, each data provider 

may be able to breach privacy of records provided by 

others. In our example from 

Table I, T
*
a satisfies only 0-privacy w.r.t. C = k-

anonymity ^ l-diversity (k = 3, l = 2), while T
*
b 

satisfies 1-privacy w.r.t. the same C. 

m-Privacy is defined w.r.t. a privacy constraint C, 

and hence will inherit strengths and weaknesses of C. 

For example, if C is defined by k-anonymity, then 

ensuring m-privacy w.r.t. C will not protect against 

homogeneity attack [9] or deFinetti attack [14]. 

However, m-privacy w.r.t. C will protect against a 

privacy attack issued by any m-adversary, if and only 

if, C protects against the same privacy attack by any 

external data recipient. m-Privacy constraint is 

orthogonal to the privacy constraint C being used. 

 m-Privacy and Differential Privacy. Differential 

privacy [1], [3], [15] does not assume specific 

background knowledge and guarantees privacy even 

if an attacker knows all records except the victim 

record. Thus, any statistical data (or records 

synthesized from the statistical data) satisfying 

differential privacy also satisfies (n - 1)-privacy, i.e. 

maximum level of m-privacy, when any (n - 1) 

providers can collude. While m-privacy w.r.t. any 

weak privacy notion does not guarantee 

unconditional privacy, it offers a practical tradeoff 

between preventing m-adversary attacks with 

bounded power m and the ability to publish 

generalized but truthful data records. In the rest of the 

paper, we will focus on checking and achieving m-

privacy w.r.t. weak privacy constraints.  

 

B. Monotonicity of Privacy Constraints 

Generalization based monotonicity has been 

defined for privacy constraints in the literature 

(Definition 2.2) [9], [12] and has been used for 

designing efficient generalization algorithms to 
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satisfy a privacy constraint ([11], [16], [9], [12]). In 

this paper we will refer to it as generalization 

monotonicity.  

Definition 2.2: (GENERALIZATION 

MONOTONICITY OF A PRIVACY CONSTRAINT 

[9], [12]) A privacy constraint C is generalization 

monotonic if and only if for any set of anonymized 

records T
*
satisfying C, all its further generalizations 

satisfy C as well.     Generalization monotonicity 

assumes that original records T have been already 

anonymized and uses them for further 

generalizations. In this paper, we also introduce more 

general, record-based definition of monotonicity in 

order to facilitate the analysis and design of efficient 

algorithms for checking m-privacy. 

Definition2.3 :( EQUIVALENCE GROUP 

MONOTONICITY OF A PRIVACY 

CONSTRAINT, EG MONOTONICITY) A privacy 

constraint C is EG monotonic if and only if any set of 

anonymized records T
*
 satisfies C, then all supersets 

of T∗  with the same QI attribute satisfy EG 

monotonicity is more restrictive than generalization 

monotonicity. If a constraint is EG monotonic, it is 

also generalization monotonic. But vice versa does 

not always hold. k-Anonymity and l-diversity that 

requires l distinct values of sensitive attribute in an 

equivalence group are examples of EG monotonic 

constraints, which are also generalization monotonic. 

Entropy l-diversity [9] and t-closeness [12] are 

examples of generalization monotonic constraints 

that are not EG monotonic at the same time. For 

example, consider a subset of two anonymized 

records with 2 different sensitive values satisfying 

entropy l-diversity (l = 2), i.e. distribution of sensitive 

attribute values in the group is uniform. Entropy l-

diversity is not EG monotonic because it will not 

hold if we add a record that will change the 

distribution of sensitive values (and entropy) 

significantly. However, it is generalization monotonic 

because it will still hold if any other subgroup 

satisfying entropy l-diversity (l = 2) is added 

(generalized) into the first subgroup. Observation 

2.2: If all constraints in a conjunction C = C1 ^ C2 ^ . 

. . ^ Cw are EG monotonic, then the constraint C is 

EG monotonic. Similar observation holds for 

generalization monotonicity. In our example, C is 

defined as a conjunction of k-anonymity and l-

diversity. Since both of them are EG monotonic [9], 

C is EG monotonic.  

Theorem 2.1: m-Privacy with respect to a constraint 

C is EG monotonic if and only if C is EG monotonic. 

Due to limited space, the proof of this theorem has 

been moved to our technical report [17]. This 

theorem and its proof holds also when applied for 

generalization monotonicity. Note that monotonicity 

in this theorem is defined with respect to records and 

not m. Observation 2.3: If a constraint C is EG 

monotonic, then the definition of m-privacy w.r.t. C 

(Definition 2.1) may be simplified. T∗  = A(T) 

satisfies m-privacy w.r.t. C, if and only if, 

 8I _ P, |I| = m,C is monotonic,C (A(T\TI )) = true 

Indeed, for an EG monotonic C, if a coalition I 

cannot breach privacy, then any sub-coalition with 

fewer records cannot do so either (Definition 2.3). 

Unfortunately, generalization monotonicity of C is 

not sufficient for the simplification presented in this 

observation. 

              

III. VERIFICATION OF m-PRIVACY 
Checking whether a set of records satisfies m-

privacy creates a potential computational challenge 

due to the combinatorial number of m-adversaries 

that need to be checked. In this section, we first 

analyze the problem by modeling the checking space. 

Then we present heuristic algorithms with effective 

pruning strategies and adaptive ordering techniques 

for efficiently checking m-privacy for a set of records 

w.r.t. an EG monotonic privacy constraint C. 

 A. Adversary Space Enumeration Given a set of 

nG data providers, the entire space of m adversaries 

(m varying from 0 to nG - 1) can be represented using 

a lattice shown in Figure 2. Each node at layer m 

represents an m-adversary of a particular combination 

of m providers. The number of all possible m-

adversaries is equal to (nG m ) . Each node has 

parents (children) representing their direct super- 

(sub-) coalitions. For simplicity the space is also 

represented as a diamond, where a horizontal line 

corresponds to all m-adversaries with the same m 

value, the bottom node corresponds to 0-adversary 

(external data recipient), and the top line to (nG - 1)-

adversaries. 

 
Fig. 2. m-Adversary space. 

 

In order to verify m-privacy w.r.t. a constraint C 

for a set of records, we need to check C for the 

records excluding any subset of records owned by 

any m-adversary. When C is EG monotonic, we only 

need to check C for the records excluding all records 

from any m-adversary (Observation 2.3). For 

example, in Figure 2, given m = 2, all coalitions that 

need to be checked are represented by question 

marks. If C is EG monotonic, then it is sufficient to 

check only the question marks on the horizontal line. 

Given an EG monotonic constraint, a direct 

algorithm can sequentially generate all possible (
nG

 m) 

m-adversaries and then check privacy of the 

corresponding remaining records. The complexity is 

then determined by (
nG

m). In the worst-case scenario, 

when m = nG/2, the number of checks is equal to the 

central binomial coefficient ( nG 
nG

/2 ). In the 
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remainder of this section, we will focus on the EG 

monotonic case and present heuristic algorithms for 

efficiently checking m-privacy.  

 

B. Heuristic Algorithms 

The key idea of our heuristic algorithms is to 

efficiently search through the adversary space with 

effective pruning such that not all m-adversaries need 

to be checked. This is achieved by two different 

pruning strategies, an adversary ordering technique, 

and a set of search strategies that enable fast pruning. 

Pruning Strategies. The pruning strategies are 

possible thanks to the EG monotonicity of m-privacy 

(Observations 2.1, 2.3). If a coalition is not able to 

breach privacy, then all its sub coalitions will not be 

able to do so and hence do not need to be checked 

(downward pruning). On the other hand, if a coalition 

is able to breach privacy, then all its super-coalitions 

will be able to do so and hence do not need to be 

checked (upward pruning). In fact, if a sub-coalition 

of an m-adversary is able to breach privacy, then the 

upward pruning allows the algorithm to terminate 

immediately as the m-adversary will be able to 

breach privacy (early stop). Figure 3 illustrates the 

two pruning strategies where + represents a case 

when a coalition does not breach privacy and - 

otherwise.  

Adaptive Ordering of Adversaries. In order to 

facilitate the above pruning in both directions, we 

adaptively order the coalitions based on their attack 

powers (Figure 4). This is motivated by the following 

observations. For downward pruning, super-

coalitions of m-adversaries with limited attack 

powers are preferred to check first as they are less 

likely to 

 
Fig. 3. Pruning strategies for m-privacy check. 

 

breach privacy and hence increase the chance of 

downward pruning. In contrast, sub-coalitions of m-

adversaries with significant attack powers are 

preferred to check first as they are more likely to 

breach privacy and hence increase the chance of 

upward pruning (early-stop).  

 
Fig. 4. Adaptive ordering for efficient pruning and 

the worst-case scenario without any pruning possible. 

To quantify privacy fulfillment by a set of 

records, which is used to measure the attack power of 

a coalition and privacy of remaining records (used to 

facilitate the anonymization, which we will discuss in 

next section), we introduce the privacy fitness score 

w.r.t. C for a set of records. 

 Definition 3.1: (PRIVACY FITNESS SCORE) 

Privacy fitness FC for a set of records T∗  is a level 

of the fulfillment of the privacy constraint C. A 

privacy fitness score is a function f of privacy fitness 

with values greater or equal to 1 only if C (T
*
) = true, 

  

   scoreFC(T*) = f (FC1 (T*), FC2 (T *), . . . , 

FCw(T*))  

 

In our setting, C is defined as k-anonymity ^ l-

diversity. The privacy fitness score can be defined as 

a weighted average of the two fitness scores with α 2 

(0, 1). When C(T∗ ) = false, scoreFC(T∗ ) = 

max(1�ϵ, FC(T∗ )), where ϵ is small. In our example 

scoreFC is defined as follow: 

scoreFC1^C2(T*)=(1-α).|
𝑇∗

𝐾
|+α

| 𝑡 𝐴𝑆 :𝑙𝑡∈𝑇∗ ]

𝑙
                (1) 

The attack power of a coalition can be then 

measured by the privacy fitness score of the records 

jointly contributed by its members, as the higher the 

privacy fitness score, the more likely they will be 

able to breach the privacy for the remaining records 

in a group after removing their own records. In order 

to maximize the benefit of both pruning strategies, 

the super-coalitions of m-adversaries are generated in 

the order of ascending fitness scores (ascending 

attack powers), and the sub-coalitions of m-

adversaries are generated in the order of descending 

fitness scores (descending attack powers) (Figure 4). 

Now we present several heuristic algorithms that use 

different search strategies, and hence utilize different 

pruning. All of them use the adaptive ordering of 

adversaries to enable fast pruning. 

The Top-Down Algorithm. The top-down algorithm 

checks the coalitions in a top-down fashion using 

downward pruning, starting from (nG - 1)-adversaries 

and moving down until a violation by an m-adversary 

is detected or all m-adversaries are pruned or 

checked. 

The Bottom-Up Algorithm. The bottom-up 

algorithm checks coalitions in a bottom up fashion 

using upward pruning, starting from 0-adversary and 

moving up until a violation by any adversary is 

detected (early-stop) or all m-adversaries are 

checked.  

The Binary Algorithm. The binary algorithm, 

inspired by the binary search algorithm, checks 

coalitions between (nG �1)- adversaries and m-

adversaries and takes advantage of both upward and 

downward prunings (Figure 5, Algorithm 1). The 

goal of each iteration is to search for a pair Isub and 

Isuper, such that Isub is a direct sub-coalition of 

Isuper and Isuper breaches privacy while Isub does 
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not. Then Isub and all its sub-coalitions are pruned 

(downward pruning), Isuper and all its super-

coalitions are pruned (upward pruning) as well. 

Algorithm 1: The binary verification algorithm 

Data: A set of records T provided by P1; : : : ; PnG, 

a monotonic privacy 

constraint C, a privacy fitness scoring function 

scoreF and the m value 

Result: true if T * is m-private, false otherwise 

1  begin 

2  sites = sort_sites(P, increasing order, 

scoreF ) 

3  use_adaptive_order_generator(sites, m) 

4  while is_m-privacy_verified(T*, m) = false 

do 
5   Isuper = next_coalition_of_size(n 

− 1) 

6   if privacy_is_breached_by(Isuper) 

then 

7      continue 

8   Isub = next_sub-

coalition_of(Isuper;m) 

9   if privacy_is_breached_by(Isub) 

then 

10       return false //early stop 

11  while is_coalition_between(Isub, Isuper) do 

12   I = next_coalition_between(Isub, 

Isuper) 

13   if privacy_is_breached_by(I) then 

14    Isuper = I 

15   else 

16    Isub = I 

17  prune_all_sub-coalitions(Isub) 

18  prune_all_super-coalitions(Isuper) 

19   return true 

The search works as follows. First, it starts with (nG - 

1)- adversaries and finds the first one that violates 

privacy and assigns it to Isuper (lines from 5 to 7). 

Then, it finds an madversary that is a sub-coalition of 

Isuper and assigns it to Isub (line 8). At each step, a 

new coalition I : Isub _ I _ Isuper (such that jIj = 

|Isuper|+|Isub| 2 ; line 12) is checked (line 13). 

If I violates privacy, then Isuper is updated to I (line 

14). Otherwise, Isub is updated to I (line 16). It 

continues until 

the direct parent-child pair Isuper and Isub are found 

(line 11). Then both upward and downward prunings 

are performed (lines 17 and 18) and the algorithm 

moves to the next iteration. The algorithm stops with 

the same criteria as the top down algorithm (line 4). 

 
Fig. 5. The binary verification algorithm. 

Adaptive Selection of Algorithms. Each of the 

above algorithms focuses on different search strategy, 

and hence utilizes different pruning. Which algorithm 

to use is largely dependent on the characteristics of a 

given group of providers?. Intuitively, the privacy 

fitness score (Equation 1), which quantifies the level 

of privacy fulfillment of records, may be used to 

select the most suitable verification algorithm. The 

higher the fitness score of attacked records, the more 

likely m-privacy will be satisfied, and hence a top-

down algorithm with downward pruning will 

significantly reduce the number of adversary checks. 

We utilize such an adaptive strategy in the 

anonymization algorithm (discussed in the next 

section) and will experimentally compare and 

evaluate different algorithms in the experiment 

section.   

 

C. Time Complexity 

In this section, we derive the time complexity for 

the m privacy verification algorithms. Since the 

algorithms involve multiple checks of privacy 

constraint C used to define m privacy for various 

combinations of records, we assume that each check 

of C takes a constant time. Formally, it can be 

modeled by an oracle, which performs the check for 

given records in O (1) time. All the above 

verification algorithms have the same worst case 

scenario (Figure 4), in which all super-coalitions of m 

adversaries violate privacy, while all sub-coalitions 

of m-adversaries do not. Hence neither adaptive 

ordering nor pruning strategies are useful. The direct 

algorithm will check exactly (
nG

 m) m-adversaries 

before confirming m-privacy, where nG is the 

number of data providers contributing to the group. 

This is the minimal number of privacy verifications 

for this scenario and any other algorithm will execute 

at least that many privacy checks. The bottom-up 

algorithm will check 0-adversary (external data 

recipient) up to all m-adversaries, which requires Σ
m
 

i=0 (
nG

 i)= O (n
m

G ) checks. The top-down algorithm 

will check all (nG - 1)-adversaries to all 

madversaries, which requires Σ
nG−1

 i=m (nG i) = O 

(n
n
G−1−m G) checks. The binary algorithm will run 

(
nG

 m) iterations and within each O(log (nG - m)) 

privacy checks. Thus, the total time complexity is O 

(nm G log (nG -m)). 

The average time complexity analysis is more 

involved. The average time complexity is strongly 

correlated with value of m for all algorithms. For 

each of them the lower bound of the average time 

complexity is O(nG). The upper bound of the average 

time complexity is different for each algorithm, that 

is O ((3/2)nG) for top-down, O(2nGn−1=2G) for 

both bottom up and direct, and O (2nG log2 nG nG) 

for binary. Thus, adapting m-privacy verification 

strategy to domain settings is crucial to achieve, on 

average, a low runtime. The analysis details are 
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omitted in this paper due to space restrictions. Please 

refer to our technical report [17] for how we derived 

the bounds.  

 

IV. ANONYMIZATION FOR m-

PRIVACY 
After defining the m-privacy verification 

algorithm, we can now use it in anonymization of a 

horizontally distributed dataset to achieve m-privacy. 

In this section, we will present a baseline algorithm, 

and then our approach that utilizes a data provider-

aware algorithm with adaptive m-privacy checking 

strategies to ensure high utility and m-privacy for 

anonymized data. Since we have shown that m-

privacy with respect to a generalization monotonic 

constraint is generalization monotonic (Theorem 2.1), 

most existing generalization-based anonymization 

algorithms can be modified to achieve m-privacy – 

every time a set of records is tested for a privacy 

constraint C, we check m-privacy w.r.t. C instead. As 

a baseline algorithm to achieve m-privacy, we 

adapted the multidimensional Mondrian algorithm 

[16] designed for k-anonymity. A main limitation of 

such a simple adaptation is that groups of records are 

formed oblivious of the data providers, which may 

result in over-generalization in order to satisfy m-

privacy. We introduce a simple and general algorithm 

based on the Binary Space Partitioning (BSP) 

(Algorithm 2). Similar to the Mondrian algorithm, 

which is also an example of BSP algorithms, it 

recursively chooses an attribute to split data points in 

the multidimensional domain space until the data 

cannot be split any further while satisfying m-privacy 

w.r.t. C. However, the algorithm has three novel 

features: 1) it takes into account the data provider as 

an additional dimension for splitting; 2) it uses the 

privacy fitness score as a general scoring metric for 

selecting the split point; 3) it adapts its m-privacy 

verification strategy for efficient verification. The 

pseudo code for our provider-aware anonymization 

algorithm is presented in Algorithm 2. We describe 

the algorithm details with respect to the novel 

features below.  

Algorithm 2: The provider-aware algorithm. 

Data: A set of records T = ∪n j=1 Tj provided by 

{P1; P2; : : : ; Pn}, a set of 

QI attributes Ai (i = 1; : : : ; q), m, a privacy 

constraint C 

Result: Anonymized T 

∗  that satisfies m-privacy w.r.t. C 

1 begin 

2  𝜋 = get_splitting_points_for_attributes(Ai) 

3   𝜋 = π∪  

get_splitting_point_for_providers(A0) 

4  π ′ = {ai ∈  _; i ∈  {0; 1; : : : ; q} : 

are_both_split_subpartitions_m-private(T; 

ai)} 

5  if π′ is ϕthen 

6   T* = T*∪  generalize_all_QIs (T) 

7   return T 

∗  

8  Aj = choose_splitting_attribute(T, C, π’) 

′) 

9  (T‘r, T′l ) = split(T, Aj) 

10  Run recursively for T′l and T’r 

′ 

r 

 

Provider-Aware Partitioning. The algorithm first 

generates all possible splitting points, π, for QI 

attributes and data providers (line 2 and 3 of 

Algorithm 2). In addition to the multidimensional QI 

domain space, we consider the data provider or data 

source of each record as an additional attribute of 

each record, denoted as A0. For instance, each data 

record t contributed by data provider P1 in our 

example (Table I) will have t[A0] = P1. Introducing 

this additional attribute in our multi-dimensional 

space adds a new dimension for partitioning. Using 

A0 to split data points decreases number of providers 

in each partition and hence increases the chances that 

more sub-partitions will be m-private and feasible for 

further splits. This leads to more splits resulting a 

more precise view of the data and have a direct 

impact on the anonymized data utility. To find the 

potential split point along this dimension, we can 

impose a total order on the providers, e.g. sorting the 

providers alphabetically or based on the number of 

records they provide, and find the splitting point that 

partitions the records into two approximately equal 

groups. 

Adaptive m-privacy verification. m-Privacy is then 

verified for all possible splitting points and only 

those satisfying m-privacy are added to a candidate 

set π′ (line 4). In order to minimize the time, our 

algorithm adaptively selects an m-privacy verification 

strategy using the fitness score of the partitions. 

Intuitively, in the early stage of the anonymization 

algorithm, the partitions are large and likely m-

private. A top-down algorithm, which takes 

advantage of the downward pruning, may be used for 

fast verification. However, as the algorithm 

continues, the partitions become smaller, the 

downward pruning is less likely and the top-down 

algorithm will be less efficient. A binary algorithm or 

others may be used instead to allow upward pruning. 

We experimentally determine the threshold of 

privacy fitness score for selecting the best 

verification algorithm and verify the benefit of this 

strategy. Privacy Fitness Score Based Splitting Point 

Selection. Given a non-empty candidate set π′ 

(Algorithm 2), we use the privacy fitness score 

(Definition 3.1) defined in the previous section and 

choose the best splitting point (line 8). Intuitively, if 

the resulting partitions have higher fitness scores, 

they are more likely to satisfy m-privacy with respect 
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to the privacy constraint and allow for further 

splitting. We note that the fitness score does not have 

to be exactly the same function used for adaptive 

ordering in m-privacy check. For example, if we use 

Equation 1, the weight parameter used to balance 

fitness values of privacy constraints, should have, 

most likely, different value. The algorithm then splits 

the partition and runs recursively on each sub-

partition (line 9 and 10).  

 

V. EXPERIMENTAL RESULTS 
We present two sets of experiment results with 

the following goals: 1) to compare and evaluate the 

different m-privacy verification algorithms given a 

set of records, and 2) to evaluate and compare the 

proposed anonymization algorithm for a given 

dataset with the baseline algorithm in terms of both 

utility and efficiency.  

 

A. Experiment Setup 

We used combined training and test sets of the 

Adult dataset2. Records with missing attribute values 

have been removed. 

2The Adult dataset has been prepared using the 

Census database from 1994, 

http://archive.ics.uci.edu/ml/datasets/Adult 

All remaining 45,222 records have been used in 

all experiments. The Occupation has been chosen as 

a sensitive attribute AS. This attribute has 14 distinct 

values. Data are distributed among n data providers 

P1, P2, . . . , Pn such that their distribution follows a 

uniform or exponential distribution. We observe 

similar results for both of them and only report those 

for the exponential distribution in the paper. 

The privacy constraint C is defined by k-

anonymity [11] and l-diversity [9]. C is EG 

monotonic (Definition 2.3). We note again m-privacy 

is orthogonal to the privacy constraint being used in 

its definition. Both m-privacy verification and 

anonymization use privacy fitness scores, but with 

different values of the weight parameter α. Values of 

α can be defined in a way that reflects restrictiveness 

of privacy constraints. The impact of the weight 

parameter to overall performance was experimentally 

investigated and values of α for the most efficient 

runs have been chosen as defaults. All experiment 

and algorithm parameters, and their default values are 

 listed in Table II.  

 

 
 TABLE II 

EXPERIMENT PARAMETERS AND DEFAULT 

VALUES. 

   All experiments have been performed on Sun 

Microsystems SunFire V880 with 8 CPUs, 16 GB of 

RAM, and running Solaris 5.10.  

B. m-Privacy Verification 

   The objective of the first set of experiments is to 

evaluate the efficiency of different algorithms for m-

privacy verification given a set of records TG with 

respect to the previously defined privacy constraint 

C.  

Attack Power. In this experiment, we compared the 

different m-privacy verification heuristics against 

different attack powers. We used two different 

groups of records with relatively small and large 

average number of records per data provider, 

respectively. Figure 6 shows the runtime with 

varying m for different heuristics for the two groups. 

 
Fig. 6. Runtime (logarithmic scale) vs. m. 

 

The first group counts 150 records and has a 

small average fitness score per provider (equal to 

0.867), which reflects a high probability of privacy 

breach by a large m-adversary. For almost all values 

of m the binary algorithm achieves the best 

performance due to its efficient upward and 

downward pruning. However, the top-down 

algorithm is comparable with binary for m > nG/2. 

The second group counts 750 records and has a larger 

average fitness score per provider (equal to 2.307). 

Therefore intuitively, it is very unlikely that a 

coalition of adversaries will be able to breach privacy 

and the downward pruning can be applied often. This 

intuition is confirmed by results, which show that the 

top-down algorithm is significantly better than other 

heuristics. Since the remaining algorithms do not rely 

so much on the downward pruning, they have to 

perform an exponential number of checks. We can 

also observe a clear impact of m when m _ nG/2 

incurs the highest cost.  

Number of Contributing Data Providers. In this 

experiment, we analyzed the impact of contributing 

data providers (nG) on the different algorithms for 

the small and large group respectively. Figure 7 

shows the runtime of different heuristics with varying 

number of contributing data providers nG.  

  
Fig. 7. Runtime (logarithmic scale) vs. number of 

data providers. 

http://archive.ics.uci.edu/ml/datasets/Adult
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We observe that increasing the number of 

contributing data providers has different impacts on 

different algorithms in the two group settings. In the 

first group, where the average number of records per 

provider is small, the execution time for each 

algorithm grows exponentially. In this case the set of 

records has a low privacy fitness score and is very 

vulnerable to attacks from m-adversaries. Adding 

more providers will exponentially increase the 

domain of possible m-adversaries. Similar trend is 

found for the large group with higher number of 

records per provider and for binary, direct, and 

bottom-up algorithms. However, for the top-down 

algorithm runtime stays low despite the number of 

providers. This is due to its effective use of 

downward pruning. In our experiment the top-down 

algorithm runtime was very short and a no trend is 

recognized. 

The Average Number of Records Per Provider. In 

this experiment, we systematically evaluated the 

impact of average number of records per provider 

(|TG|/nG) on the efficiency of the algorithms. Figure 

8 shows runtime with varying |TG|/nG (nG is 

constant while  |TG| is being hanged) for different 

heuristics. We observe that for groups with small 

average number of records per provider, both direct 

and bottom-up algorithms are very efficient as the 

group is likely to violate m-privacy. For groups with 

larger average number of records per provider, i.e. 

when |TG|/nG ≥ 15, the top-down algorithm 

outperforms others.  

Figure 8 also presents the runtime with varying 

average fitness score of contributing providers.  

 
Fig. 8. Runtime vs. |TG|/nG and average fitness score 

of providers. 

In fact, they are linearly correlated (squared 

correlation coefficient R2 = 0.97, scoreF = 0.04 . 

|TG|/nG + 0.33) due to the definition of our privacy 

fitness score. 

  When a set of records is large, i.e. values of |TG| 

and 

|TG|/nG are high, then its privacy fitness will be high 

as well. Greater values of the fitness score for a set of 

records indicates that its adversaries are less likely to 

breach privacy and the downward pruning is more 

likely to happen for a big set of adversaries. Applying 

pruning as early as possible significantly reduces 

computation time (Figure 8). 

Adaptive Strategy. Based on the above results, we 

used the following parameters for the adaptive m-

privacy checking strategy used in our anonymization 

experiments. If the average fitness score of 

contributing providers in a group is less than 0.85 

(|TG|/nG < 15), we used the binary algorithm, while 

for other cases the top-down was our choice.  

C. Anonymization for m-Privacy 

   This set of experiments compares our provider-

aware algorithm with the baseline algorithm and 

evaluates the benefit of provider-aware partitioning 

as well as the adaptive mprivacy verification on 

utility of the data as well as efficiency. To evaluate 

the utility of the anonymized data, we used the query 

error metric similar to prior work (e.g. [18], [19]). 

2,500 queries have been randomly generated and 

each query had qd predicates pi, defining a range of a 

randomly chosen quasi identifier, where qd 2[2, 

q2]and q is the number of quasi identifier attributes. 

 

SELECT t FROM T∗  WHERE p1 AND . . .AND 

pqd;  

 

Query error is defined as the difference in the results 

coming from anonymized and original data. 

Attack Power. We first evaluated and 

compared the two algorithms with varying 

attack power m. Figure 9 shows the runtime 

with varying m for the two algorithms 

respectively. We observe that the provider-

aware algorithm significantly outperforms 

the baseline algorithm. This fact may look 

counter intuitive at the first glance – our 

algorithm considers one more candidate 

splitting point at each iteration, thus the 

execution time should be higher. However, 

in each iteration of the provider-aware 

algorithm, the additional splitting point 

along data providers, if chosen, reduces the 

number of providers represented in a 

subgroup and hence reduces m-privacy 

verification time significantly (as observed 

in Figure 7). In contrast, the baseline 

algorithm preserves the average number of 

providers in each subgroup, which incurs a 

high cost for m-privacy verification. As 

expected, both algorithms show a peak cost 

when m ≈ n/2. 

 
Fig. 9. Runtime (logarithmic scale) and the query 

error for different powers of m-privacy. 

Figure 9 shows also the query error of the two 

algorithms with varying m. Intuitively, a higher 

attack power m should increase the query error as the 

data need to be generalized further to satisfy m-

privacy. Our intuition is confirmed by the result of 

the baseline algorithm, but is disproved for the 

provider-aware algorithm. The constant values of the 
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query error looks counter intuitive, but can be 

explained. The baseline algorithm, oblivious of the 

provider information, results in more generalized 

anonymized groups with increasing m. In contrast, 

the provider-aware algorithm, taking into account the 

data providers, will result in groups with smaller 

number of contributing providers (on average 1 for k 

= 15), hence can maintain a more precise view of the 

data and significantly outperforms the baseline 

algorithm. Thus, the query error may increase with m 

eventually, but it will not be as significant growth as 

for the baseline algorithm. Number of Data Records. 

This set of experiments evaluates the impact of total 

number of records in the dataset. Figure 10 shows the 

runtime and query error with varying number of 

records for both anonymization algorithms. As 

expected, the runtime for both algorithms grows with 

the number of records. However, the baseline 

algorithm has a higher growth rate than the provider-

aware algorithm. This difference is due to the 

significantly reduced m-privacy verification time in 

our algorithm, which splits the data providers and 

thus reduces the number of providers represented in a 

group. In addition, the query error is at the same rate 

for both algorithms. 

  
Fig. 10. Runtime and the query error vs. |T|. 

Adaptive m-Privacy Verification. In this 

experiment, we evaluated the benefit of the adaptive 

selection of m-privacy verification algorithms. 

Figure 11 compares the runtime of adaptive 

anonymization algorithm with two other m-privacy 

checking strategies with varying |T| and constant nG. 

For small values of |T|, the algorithm using adaptive 

verification strategy follows the binary and then the 

top-down algorithms, as we expected. However, for 

values of |T| > 300, our algorithm outperforms the 

non-adaptive strategies. The reason is that 

anonymization of a large number of records requires 

verification of m-privacy for many subgroups of 

different sizes. Adapting to such variety of groups is 

crucial for achieving high efficiency. 

 
Fig. 11. Runtime of adaptive and non-adaptive m-

privacy verifications vs. jTj (log-log scale). 

Impact of Privacy Constraints. We also performed 

a set of experiments evaluating the impact of the 

privacy constraints on the utility of data using 

anonymization algorithms for m-privacy. In our 

experiments, the constraint is defined as a 

conjunction of k-anonymity and l-diversity. Figure 12 

shows runtime and query errors with varying privacy 

constraint restrictiveness (varying k and l). Query 

error values are relative and dependent from 

selectiveness of queries. Query error values are 

different for different queries, but our algorithm will 

always have the same or lower error comparing to the 

baseline. 

 
Fig. 12. Runtime and the query error vs. k in k-

anonymity and l in l-diversity used in m-privacy. 

As expected, increasing k causes more records in 

each equivalence group and higher query error. 

Varying l changes quality of anonymization results in 

an non-monotonic way that depends on the 

distribution of sensitive values in the dataset. 

However, execution times are shorter for decreasing 

k or l values because less partitions are created.  

 

VI. RELATED WORK 
Privacy preserving data analysis and publishing 

has received considerable attention in recent years 

[1], [2], [3]. Most work has focused on a single data 

provider setting and considered the data recipient as 

an attacker. A large body of literature [2] assumes 

limited background knowledge of the attacker and 

defines privacy using relaxed adversarial notion [9] 

by considering specific types of attacks. 

Representative principles include k-anonymity [10], 

[11], l-diversity [9], and t-closeness [12]. Few recent 

works have modeled the instance level background 

knowledge as corruption and studied perturbation 

techniques under these weak privacy notions [20]. In 

the distributed setting  

we studied, since each data holder knows its own 

records, the corruption of records is an inherent 

element in our attack model and is further 

complicated by the collusive power of the data 

providers. On the other hand, differential privacy [1], 

[3] is an unconditional privacy guarantee for 

statistical data release or data computations. While 

providing a desirable unconditional privacy 

guarantee, non-interactive data release with 

differential privacy remains an open problem. Many 

different anonymization algorithms have been 

introduced so far including Datafly [21], Incognito 
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[22], and Mondrian [16]. In our research we 

considered the Mondrian algorithm as a baseline 

because its efficiency and extensibility. There are 

some work focused on anonymization of distributed 

data. [5], [6], [23] studied distributed anonymization 

for vertically partitioned data using k-anonymity. 

Zhong et al. [24] studied classification on data 

collected from individual data owners (each record is 

contributed by one data owner) 

while maintaining k-anonymity. Jurczyk et al. 

[25] proposed a notion called l′-site-diversity to 

ensure anonymity for data providers in addition to 

privacy of the data subjects. Mironovet al. [26] 

studied SMC techniques to achieve differential 

privacy. Mohammed et al. [4] proposed SMC 

techniques for anonymizing distributed data using the 

notion of LKCprivacy to address high dimensional 

data. Our work is the first that considers data 

providers as potential attackers in the collaborative 

data publishing setting and explicitly models the 

inherent instance knowledge of the data providers as 

well as potential collusion between them for any 

weak privacy. 

 

VII. CONCLUSIONS 
In this paper, we considered a new type of 

potential attackers in collaborative data publishing – 

a coalition of data providers, called m-adversary. To 

prevent privacy disclosure by any m-adversary we 

showed that guaranteeing m-privacy is enough. We 

presented heuristic algorithms exploiting equivalence 

group monotonicity of privacy constraints and 

adaptive ordering techniques for efficiently checking 

m-privacy. We introduced also a provider-aware 

anonymization algorithm with adaptive m-privacy 

checking strategies to ensure high utility and m-

privacy of anonymized data. Our experiments 

confirmed that our approach achieves better or 

comparable utility than existing algorithms while 

ensuring m-privacy efficiently. There are many 

remaining research questions. Defining a 

proper privacy fitness score for different privacy 

constraints is one of them. It also remains a question 

to address and model the data knowledge of data 

providers when data are distributed in a vertical or 

ad-hoc fashion. It would be also interesting to verify 

if our methods can be adapted to other kinds of data 

such as set-valued data. 
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